A three-leg model producing tetrapod and tripod coordination patterns of ipsilateral legs in the stick insect.

نویسندگان

  • T I Tóth
  • S Daun-Gruhn
چکیده

Insect locomotion requires the precise coordination of the movement of all six legs. Detailed investigations have revealed that the movement of the legs is controlled by local dedicated neuronal networks, which interact to produce walking of the animal. The stick insect is well suited to experimental investigations aimed at understanding the mechanisms of insect locomotion. Beside the experimental approach, models have also been constructed to elucidate those mechanisms. Here, we describe a model that replicates both the tetrapod and tripod coordination pattern of three ipsilateral legs. The model is based on an earlier insect leg model, which includes the three main leg joints, three antagonistic muscle pairs, and their local neuronal control networks. These networks are coupled via angular signals to establish intraleg coordination of the three neuromuscular systems during locomotion. In the present three-leg model, we coupled three such leg models, representing front, middle, and hind leg, in this way. The coupling was between the levator-depressor local control networks of the three legs. The model could successfully simulate tetrapod and tripod coordination patterns, as well as the transition between them. The simulations showed that for the interleg coordination during tripod, the position signals of the levator-depressor neuromuscular systems sent between the legs were sufficient, while in tetrapod, additional information on the angular velocities in the same system was necessary, and together with the position information also sufficient. We therefore suggest that, during stepping, the connections between the levator-depressor neuromuscular systems of the different legs are of primary importance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects.

The analysis of inter-leg coordination in insect walking is generally a study of six-legged locomotion. For decades, the stick insect Carausius morosus has been instrumental for unravelling the rules and mechanisms that control leg coordination in hexapeds. We analysed inter-leg coordination in C. morosus that freely walked on straight paths on plane surfaces with different slopes. Consecutive ...

متن کامل

Stick Insect Locomotion on a Wheel: Patterns of Stopping and Starting

The relationship between standing and steady walking was investigated for stick insects walking on a wheel. Normal hexapod coordination patterns ensure that each point in the gait cycle has static stability. Nevertheless, stick insects show preferred stopping sequences: the final protraction in ipsilateral metachronal sequences is most often by a front leg and least often by a rear leg (Fig. 1,...

متن کامل

Effects of functional decoupling of a leg in a model of stick insect walking incorporating three ipsilateral legs

Legged locomotion is a fundamental form of activity of insects during which the legs perform coordinated movements. Sensory signals conveying position, velocity and load of a leg are sent between the thoracic ganglia where the local control networks of the leg muscles are situated. They affect the actual state of the local control networks, hence the stepping of the legs. Sensory coordination i...

متن کامل

Pattern generation for walking and searching movements of a stick insect leg. I. Coordination of motor activity.

During walking, the six legs of a stick insect can be coordinated in different temporal sequences or gaits. Leg coordination in each gait is controlled and stabilized by coordinating mechanisms that affect the action of the segmental neuronal networks for walking pattern generation. At present, the motor program for single walking legs in the absence of movement-related coordinating intersegmen...

متن کامل

Sensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system.

Legged locomotion results from a combination of central pattern generating network (CPG) activity and intralimb and interlimb sensory feedback. Data on the neural basis of interlimb coordination are very limited. We investigated here the influence of stepping in one leg on the activities of neighboring-leg thorax-coxa (TC) joint CPGs in the stick insect (Carausius morosus). We used a new approa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 115 2  شماره 

صفحات  -

تاریخ انتشار 2016